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Figure 1: (a) This user walks while listening to music. To control the volume, they use an embodied device—in this case, a volume
slider which they control only with the pose of their wrist (via proprioception—no audiovisuals nor vibrations). To advance the
design of this emergent class of devices, we evaluate three techniques that use electrical muscle stimulation to improve the
user’s input accuracy: (1) recall previous interface state; (2) provide cues to confirm state transitions; and (3) constrain input to
a valid range. Our user study found that (b) combining these three techniques improved participants’ input accuracy.

Abstract
This paper evaluates interaction techniques to increase input ac-
curacy with embodied devices—an emergent type of interactive
system where the user’s body serves as both the input and output
medium (e.g., gestural input via cameras/IMUs; gestural output
via motors/muscle stimulation). A shortcoming of existing embod-
ied devices is their failure to enforce alignment between users’
proprioceptive inputs and interface state. Thus, we present and
evaluate interaction techniques that use muscle stimulation to en-
able embodied devices to: (1) recall previous interface states; (2)
provide confirmation cues on state transitions; and (3) constrain
inputs to valid ranges. In our study, participants performed pairs
of interactions with an embodied slider, separated by a distraction
task. The results showed that, compared to the same embodied
slider without EMS, the combination of our techniques increased
users’: (1) absolute input accuracy; (2) relative input accuracy; and
(3) confidence.
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1 Introduction
A growing class of interactive systems seeks to support eyes-free
interaction, where users control devices without relying on audio-
visual attention. These interactions are beneficial in mobile or situa-
tionally demanding contexts (e.g., walking [18], cleaning [19], climb-
ing stairs [44]). To advance systems in these contexts, researchers
explore interaction paradigms that shift input and output away from
screens/speakers and, instead, toward the body itself [7, 28, 40].

We refer to such systems as embodied devices: interactive systems
in which the user’s own body becomes the medium for both input
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and output. This type of interaction achieves input via body move-
ments (e.g., gestures detected by IMUs, cameras, EMG, etc.) and
renders output back onto the body through proprioceptive feedback
(force feedback that displaces the body via exoskeletons/muscle
stimulation) rather than visuals or sounds. Although this approach
renders some tactile sensations in the muscle or on the skin [21, 42],
the user acts and receives feedback primarily through their propri-
oceptive sense [28].

Despite their potential, the design of embodied devices remains
in its infancy. Unlike traditional UIs based on visual or audio feed-
back, which have been refined over decades by creating stable
design principles [2, 10, 45], researchers have yet to establish tech-
niques to improve interactions with embodied devices.

This paper evaluates techniques based on electrical muscle stim-
ulation (EMS), expanding the set of feedback approaches for em-
bodied devices during interactions (Figure 1). Importantly, these
techniques are meant to improve input accuracy with embodied
deviceswithout resorting to non-gestural modalities—thus respecting
the proprioceptive nature of embodied devices. We achieve this goal
by identifying interaction techniques that were loosely proposed
in prior research but never formalized or evaluated. Our key con-
tributions are: (1) systematically defining the working principles of
these embodied devices’ techniques, enabling future researchers to
build on our foundation; and (2) uncovering, through a user study,
the benefits offered by these techniques in embodied devices.

2 Related Work
Our work builds on embodied devices. While this type of interface
points to a broader shift toward interfaces that integrate with the
body [31] (including related areas such as on-body interfaces [16],
on-skin interfaces [39], and epidermal computing [34]), our scope
is restricted to gestural interfaces where the I/O operates via users’
proprioception.

2.1 Evolution of gestures as input
Gestural input via one’s body has been one of the most active re-
search areas—from influential work (e.g., VIDEOPLACE [26], Digital
Desk [48], or Charade [3]) to mainstream devices (e.g., Kinect or
hand-tracking VR headsets).

Much attention was given to designing interaction techniques
that assist users when their body (e.g., hands) becomes the input
device. For instance, Imaginary Devices [40] andHand Interfaces [36]
allow users to switch input modes by shaping their hands like the
desired input device. These types of gesture-input techniques allow
users to select which input device their body emulates (e.g., sliders
or joysticks). Moreover, considerable effort was also dedicated to
designing the bodily feel of input interactions. For instance, in
Vatavu’s bimanual relative volume slider [46], one hand acts as a
reference while the other moves up and down to input. In parallel,
many expanded gestural input to other body parts, especially for
hands/eyes-free interactions, such as feet [1, 9, 20, 43], tongue [19],
head/neck [41], and more.

Early explorations of body input identified additional modalities
for supporting users’ understanding of the state of the interface.
Oakley and Park [35] created a knob-like input device using wrist
rotations, which they improved by making transitions feelable via

vibrotactile detents. In fact, we draw inspiration from this approach
to improving gestural input by also adding output. However, given
our scope is confined to embodied devices—which operate primar-
ily through proprioception—we turn our attention to how these
interfaces leverage gestures as output.

2.2 Gestures as output (enabling embodied
devices using electrical muscle stimulation)

While gestural input is a well-established mode of interaction, the
use of body actuation as output is a more nascent area of interface
research. Embodied outputs engage the proprioceptive system to
render interface states directly through the body, enabling interac-
tions independent of audiovisual or tactile cues [28].

Proprioceptive Interaction [28] was one early system to leverage
the body as both the input and output interface. Turning the user’s
wrist into a “slider” enabled control of video playback. Gestural
input was achieved using IMUs, and to enable the system to re-
spond and move the user’s wrist, they turned to EMS. Given its
wearability [27], EMS gathered popularity with ∼150 explorations
in HCI alone [8]. Similarly, Electrical Head Actuation [41] extended
proprioceptive output to the neck, turning the user’s head nodding
into a volume slider.

Important in both [28] and [41] is the proposal that EMS should
recall the current state of an embodied device once users initiate an
interaction; in other words, EMS moves the user’s joint to match
the current slider value.

Apart from state recall, other systems used EMS to provide con-
firmatory feedback upon user input registration. For instance, in
MuscleIO [7], users toggle UI settings via wrist inputs (tracked via
EMG) and the system responds with feelable proprioceptive feed-
back to confirm state transitions (via EMS). Similarly, in [29], EMS
provides tactile detents when users cycle between valid UI settings
in mixed reality knobs (controlled by rotating their wrist).

Collectively, these works established the foundational princi-
ple of embodied devices: both input and output occur via propri-
oception [28]. However, these implementations of embodied de-
vices rely on EMS to move the user’s body. While EMS allows for
rendering proprioceptive output back to the user, EMS is known
to conflict with users’ own movements, diminishing their sense
of agency [21, 33], causing distractions from its tingling sensa-
tions [21], and even impairing memorization and recall of ges-
tures [33]. Given these well-established downsides of EMS, we
ask an important question: can these EMS-based techniques
improve the input accuracy of an embodied device? Prior works
provided a foundation for these explorations but never formalized
nor evaluated these EMS techniques—this is our contribution.

In fact, recent frameworks, such as Non-Natural Interaction De-
sign [47], underscore the critical importance of the usability of
gestures—an argument central to our investigation which is meant
to enhance the usability of gestures by improving gestural input
accuracy.

3 Interaction Techniques to Improve Embodied
Devices

To increase the input accuracy while using embodied devices, we
identified recurring themes loosely explored in prior works and
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Figure 2: Physical devices intended for eyes-free use (e.g., a motorized fader in a Behringer X32 mixer or a Boeing airplane’s
throttle quadrant) use techniques that enable users to feel the system’s state without audiovisual cues. These devices serve as
analogous examples to the techniques we evaluate to improve the input accuracy of embodied devices, such as this embodied
slider on the wrist.

formalized them into three techniques—recall, confirmation, and
constraint—that we evaluated in our study.

Shared principles. The goal is to align the user’s proprioceptive
state (i.e., the pose of the limbs controlling the device) with the
device’s state (i.e., the current values of the interface). This principle
draws heavily from Nielsen’s usability heuristic “visibility of sys-
tem status” [32]. More traditional interfaces (e.g., GUIs or physical
controls) typically achieve these alignments via visuals (e.g., a GUI
slider [2] has a visual representation of its current value, max/min
range, and visual detents), sounds (e.g., volume sliders on OSes
play “ping” sounds proportional to the current value), or haptics
(e.g., detents on a DJ’s fader or airplane’s throttle quadrant). Un-
fortunately, achieving this alignment is challenging for embodied
devices because the user’s I/O is entirely based on proprioception
(without audiovisuals or touch) [28]. Thus, these techniques all
work through force feedback, informing the user via propriocep-
tion about various aspects of the state of the interface they are
controlling (e.g., range, transitions, etc.).

Analogy to physical devices. We believe an analogy to physi-
cal devices is helpful, since physical devices (e.g., car radio buttons,
vehicle pedals, airplane controls, knobs on a DJ mixer) have long
been designed with similar principles in mind to enable eyes-free
interactions, i.e., without relying on audiovisual cues which are

likely to distract from other audiovisual tasks. Given that an em-
bodied slider was used to formalize our interaction techniques, we
provide a helpful analogy to its physical counterpart, i.e., physical
sliders such as those in Figure 2 (DJ faders or airplane throttle).

3.1 Interaction technique 1: recall (aligning
body with system state)

The challenge that embodied recall solves. Unlike GUIs, which
visually persist on-screen to reflect their state, embodied devices
are ephemeral: the body cannot remain posed in perpetuity as it is
constantly engaged in other tasks. Thus, task switching via invo-
cation/dismissal gestures is a key feature that gestural interfaces
support. Given this requirement, even early explorations of em-
bodied devices featured gestures to start/stop the interface [28, 41].
However, the key challenge is not invocation, but what immedi-
ately follows; when a user starts an embodied device, their body
posture is unlikely to reflect the current UI state. Without feedback
to align the user’s body pose with the UI state, inconsistencies will
occur. For instance, after invocation, the UI value could jump to a
new value based on the user’s current pose rather than smoothly
tracking from the previous state. The physical sliders in Figure 2
are therefore motorized—if the user adjusts volume from another

Figure 3: Illustrating the recall technique using an embodied slider for eyes-free volume control (via wrist).
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GUI, the slider on this X32 mixer [4] aligns itself. Similarly, during
autopilot, Boeing’s throttle quadrant [11] tracks smoothly to align
the system’s state with the slider’s physical representation.

Definition of embodied recall.Upon invocation, the embodied
interface actuates the user’s limb to match the interface state, as
depicted in Figure 3. Recall reflects continuously changing values
(e.g., ongoing playback position [28, 42]) by continuously actuating
the limb. During continuous recalls, the interface allows the user to
make changes. Conversely, recall stopswhen the value is unchanged
or reached, leaving the limb at the desired position.

Exemplifying recall on an embodied slider. Figure 3 exem-
plifies how recall solves inconsistencies between a device and its
user. In Figure 3 (a), the user controls an embodied volume slider
when (1) they receive a smartphone notification, causing them to
(2) switch tasks. Upon returning to the embodied device, (3) their
wrist position has shifted since their previous interaction, causing a
sudden, unexpected change in volume. In (b), the same interaction
occurs: (1), they receive a notification and (2), they switch to the
phone; however, in (3), the embodied device automatically recalls
their previous joint position, avoiding a sudden volume change.

Benefits of embodied recall. The benefits are that users: (1) im-
mediately understand current UI states; (2) do not need to remem-
ber previous states—freeing up cognitive resources; and (3) can
smoothly adjust from previous states, preventing errors like ac-
cidental “jumping”. Recall supports Nielsen’s usability heuristic
“recognition rather than recall” [32].

3.2 Interaction technique 2: confirmation
(signaling interface state transitions)

The challenge that confirmation solves. Interfaces confirm state
transitions through persistent visual, audio, or haptic cues (e.g., GUI
checkboxes fill in visually, volume sliders provide auditory “pings”,
and physical faders have feelable detents). Embodied devices are
challenged with providing equivalent proprioceptive confirmations
for interface state transitions.Without confirmatory feedback, users
are likely to make erroneous inputs, undermining their mental
model.

Definition of embodied confirmation. Whenever an embod-
ied input changes the interface state (e.g., an embodied slider moves
to a new value, an embodied button is pressed, etc.), a propriocep-
tive confirmation cue is issued. These cues signal to users that their
input was valid and the system moved into its new state. Confirma-
tions must be provided in ways that are proprioceptively felt (e.g.,
force resistance, muscular twitches, stopping a movement, etc.).

Exemplifying confirmation on an embodied slider. In Fig-
ure 4 (a), a user controls an embodied volume slider when (1) they
receive a smartphone notification, but when they (2) reach for their
pocket, (3) the movement unintentionally inputs a volume change,
since the embodied device was still active. In (b), they (1) respond to
the notification but (2) as they reach for their phone, they immedi-
ately feel a confirmation cue via EMS, allowing them to realize the
system was still receiving input—thus, to prevent mistakes, (3) they
dismiss the interface.

Benefits of embodied confirmation. Proprioceptive cues (e.g.,
detents) make transitions more kinesthetically legible, increasing
input certainty. Confirmation supports Nielsen’s usability heuristic
“visibility of system status” [32] (since embodied devices do not rely
on visuals, “visibility” is equivalent to “perceptibility”).

3.3 Interaction technique 3: constraints
(bounding inputs to a range)

The challenge that constraints solve.Most UIs contain bound-
aries to constrain input. For example, users cannot drag a slider’s
handles beyond the constraints of its track; similarly, radio buttons
constrain users to one input which, upon selection, deselects the
previous. Embodied devices face the challenge of enforcing these
constraints in the body to ensure users cannot perform gestures
that would place the interface in an invalid (e.g., move past the
range) or ambiguous state (e.g., activating two mutually-exclusive
options in an embodied radio button).

Definition of embodied constraints.During input, the embod-
ied device constrains the user’s limb within the interface’s possible
range by actuating it. If the embodied device uses a segment of a
limb’s full range of motion (e.g., an embodied slider on the wrist

Figure 4: Illustrating the confirmation technique using an embodied slider for eyes-free volume control (via wrist).
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Figure 5: Illustrating the constraints technique using an embodied slider for eyes-free volume control (via wrist).

that uses less than the wrist’s full flexion-extension range), the in-
terface needs to constrain the user when they move outside of the
input range by returning their limb to the valid range. Similarly, if
the embodied device features mutually-exclusive inputs (e.g., states
that once selected, deselect others), the interface needs to actuate
the body to prevent invalid input states.

Exemplifying constraints on an embodied slider. In Fig-
ure 5 (a), a user enters a noisy construction area and (1) adjusts
an embodied slider to increase their music volume. (2) They ex-
tend their wrist beyond the slider’s limits, unaware that the device
has already reached maximum volume. In (b), (1) the same interac-
tion occurs, but (2) EMS constrains their movement, signifying the
device cannot further increase its volume.

Benefits of embodied constraints. Constraints act as both
physical bounds and communicative cues, clipping motion to signal
that no further input is accepted. Constraints support Nielsen’s
usability heuristic “error prevention” [32].

4 Implementation of an Embodied Device to
Evaluate these Interaction Techniques

To measure how these interaction techniques affect input accuracy,
we implemented a simple embodied slider controlled via wrist
tilting [28, 41]. To assist readers in replicating our apparatus, we
provide the necessary technical details.

4.1 I/O implementation
Interaction with our embodied slider is performed by: (1) an invoca-
tion gesture (thumb radial adduction, towards the palm); (2) input by
changing wrist angle (flexion/extension axis, ignoring radial/ulnar-
deviations and pronation/supination); and (3) a dismissal gesture
(thumb radial abduction, away from the palm).

Input module is responsible for: (1) starting and stopping inter-
actions by tracking the invocation and dismissal gestures; (2) saving
input to the state of the slider; (3) updating applications (e.g., for
demonstration purposes, we built a simple volume control); and
(4) requesting actuations from the output module. There are am-
ple methods available to track wrist poses, such as EMG [7, 38],
IMU [28, 37], flex/bend/encoders [14, 23], optical [5, 24], or even
mainstream devices (e.g., Kinect, hand-tracking in VR headsets,
etc.)—just to cite a few. For the simplicity of the study’s apparatus,

tracking usesMediaPipe [30] and an RGB camera (2.448 mm, 1080P,
60 FPS) viewing the radial side of the hand.

Output module is responsible for actuating the wrist with
EMS using a medically compliant RehaMove 3 stimulator controlled
by a low-level Serial USB API (latency <1ms). A closed-loop PID
controller—the most popular way to achieve robust EMS control
(used in embodied devices [28, 41] and EMS interfaces [22])—reliably
controls the user’s wrist. The system achieves recall and constraint
by defining a target angle (e.g., slider boundary for constraint).
Then, the output module’s PID controls its pulse width, minimizing
angular error between current and target positions. To prevent
near-target oscillations, stimulation deactivates when the error is
<4◦. The PID’s input unit is degrees (for angular error) and its
output unit is µs (for PWM control). Via initial pilots, we settled on
the PID constants: 𝐾𝑝 = 7.0 µs/◦, 𝐾𝑖 = 0.8 µs/◦/s, 𝐾𝑑 = 1.5 µs · s/◦
and clamped the pulse width between 20–400 µs. The dual-muscle
controller operates for both the extensor digitorum and the flexor
digitorum superficialis. Finally, for confirmation cues, the output
module delivers a pulse with a weaker stimulation intensity precal-
ibrated to avoid strong movement (see User Study).

4.2 Technical evaluation
We performed a simple technical evaluation to ensure our closed-
loop system suffices for our User Study purposes. We recruited four
participants from our local institution (average age= 23.5, SD= 2.87;
male). This study was approved by our Institutional Review Board
(IRB21-1158). Calibration used the same process from theUser Study.

Setup. We tested six different target angles: −45◦, −27◦, −9◦,
9◦, 27◦, 45◦. For input module evaluation, participants tilted their
wrist at a target angle confirmed by a protractor; this ground truth
was compared to the MediaPipe measurement. For output mod-
ule evaluation, the PWM controller stimulated participants’ wrists
toward each target angle until it stabilized on the target for 2.5 sec-
onds. We recorded the angle of their wrist tilt at the end of this
stimulation and compared it to the target angle to obtain the error.
We repeated this for 12 trials (six target angles × two repetitions),
totaling 48 trials across all participants.

Results. For the input module, we observed a mean overall error
of 1.82◦ (SD = 1.24◦), which is lower than the human accuracy for
passive wrist position reproduction [12, 28]. For the output module,
we observed a mean error of 4.83◦ (SD = 0.65◦), which informed
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the design of the angular steps of our slider’s confirmation detents
in the main User Study.

5 User Study: Improving the Accuracy of
Embodied Devices

To understand whether the combination of these techniques im-
proves accuracy with an embodied device, we conducted a user
study. Participants performed a series of eyes-free inputs to a slider-
type embodied device controlled by the wrist.

5.1 Study design
Task rationale.We chose an embodied slider on the wrist as it is
the most explored embodied interface [7, 28, 42]. While our design
shares commonality with prior studies (e.g., [12, 28] also asked
participants to reproduce a demonstrated wrist position), we went
further by exploring a more challenging and realistic task: adding
a distraction task between each pair of inputs emulated a situation
where users need to switch between controlling their embodied
device and performing another primary task (e.g., typing on their
phone as in Figure 3, catching a pen as in [28], etc.). Finally, the
choice of a continuous (rather than discrete) slider lends itself to
finer measurement of angular error and provides insights more
readily translatable to both absolute input and/or relative input
interfaces [17].

Apparatus. To ensure consistency between trials, participants
stabilized their dominant arm on a tabletop armrest while ensuring
their wrist could move freely. Tracking the wrist angle and actu-
ating to target angles was achieved via our EMS prototype (see
Implementation). Participants wore four electrodes (50 × 50 mm
pre-gelledAuvon EMS electrode): two electrodes were attached atop
the extensor digitorum muscle to achieve wrist extension, and two
electrodes were attached atop the flexor digitorum superficialis to
achieve wrist flexion. Participants were blindfolded except during
the distraction task.

Calibration. As is typical in EMS studies, stimulation was cali-
brated to operate pain-free and robustly per participant: (1) starting
at a pulse width of 300 µs and a current of 1mA; (2) increasing in
steps of 1mA; until (3) the wrist tilted by >10◦ (flexion/extension).
The highest intensity without strong contraction was used to cali-
brate the confirmation technique.

Slider Interface. The gesture to invoke and dismiss the slider
was radial ad/abduction of the thumb from an extended position
(while MediaPipe can also detect this gesture, false positives were
prevented from contaminating the accuracy by opting for experi-
menter confirmation with a keyboard press). This slider took only
the wrist angle as input—rather than the location of the hand or
height of the fingertips—allowing invocation from any spatial loca-
tion or pose. The slider accepted inputs by tilting the wrist between
−54◦ and 54◦; inputs outside of this range were considered invalid.

Conditions. All participants experienced each of five condi-
tions: (1) input-only as our baseline (i.e., control via proprioception
alone), (2) recall-only, (3) confirmation-only, (4) constraints-only, and
(5) combined—condition order was randomized across participants.

Task. Each trial consisted of three phases: demonstration, dis-
traction, and input. In the demonstration phase, participants first
invoked the slider (thumb adduction). With the system running,

the experimenter manually moved the participant’s wrist angle to
proprioceptively demonstrate the upper and lower ranges of the
slider before moving it sequentially to two targets representing the
last and new states of the interface. During the relevant conditions,
participants felt confirmation cues and constraints (recall was not
activated during demonstration as the experimenter manually ac-
quired targets). After demonstration, participants dismissed the
slider (thumb abduction) and entered the distraction phase, where
they completed a 30 second keyboard typing test. This distraction
requires multiple hand muscles in positions that differ from the
slider, and participants must read and type sentences, which fur-
ther disrupts their memory. Finally, participants entered the input
phase, where they: invoked the slider, repositioned it to the last
state, adjusted it to the new state (e.g., as if adjusting a volume), and
dismissed it. The task is thus akin to the ipsilateral joint position
reproduction test [13, 15], a canonical assessment of proprioception.

Metrics. The key metric was the angle error between the demon-
strated targets and the input targets after distraction. Additionally,
we also measured participants’ input confidence at the end of each
condition block.

Targets.We chose six target angles unbeknownst to participants.
Given the results of the technical evaluation (EMS control-loop er-
ror of 𝐸 = 4.83◦), we chose a distance between target angles of
𝐼 ≈ 2𝐸+ 8◦ (a padding to minimize error), resulting in an interval of
18◦ after rounding. Confirmation cues were activated once the cur-
rent angle was within ±𝐼/2 (half the interval)—in other words, we
chose the most conservative confirmation implementation where
they acted as haptic detents, but they were never actual targets.
Additionally, to keep movements ergonomic [6, 25], we employed a
smaller subset of the total wrist angle range at ±54◦—these angles
are where the constraints were triggered. The resulting slider had
the targets: −45◦, −27◦, −9◦, 9◦, 27◦, 45◦. Users were always shown
one pair of targets per trial (last state and new state), resulting in 36
possible combinations. Instead of exhaustively using those combi-
nations, we chose pairs of targets at all possible angular distances,
allowing for every participant to experience pairs of equal diffi-
culty, resulting in five pairs separated by 90◦, 72◦, 54◦, 36◦, and 18◦.
Moreover, every target appeared at least once.

Total trials. We ran 600 trials, i.e., 5 conditions × 5 pairs of
targets at equalized difficulties × 2 repetitions × 12 participants.

Participants and ethics. We recruited 12 right-handed partici-
pants (average age = 23.50 years, SD = 1.89; 9 male and 3 female).
Participants gave informed consent and received $10 USD for every
30 minutes of study as compensation. This study was approved by
our Institutional Review Board (IRB21-1158).

5.2 Quantitative results
Figure 6 depicts the key results: (a) average absolute error across
conditions for all 600 trials; (b) participants’ confidence.

Accuracy. We analyze the average error across targets (i.e., the
absolute difference between target angles and respective input an-
gles). As the data did not follow a normal distribution (per Shapiro-
Wilk test), we conducted a Friedman Test. The analysis revealed
significant differences between the conditions (Q = 22.87; p < 0.001).
Post-hoc pairwise comparisons with Bonferroni correction found
that the combined condition was significantly more accurate than
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Figure 6: (a) Absolute error of inputs. (b) 1-7 Likert confidence
ratings of inputs. Boxplot bars from left to right represent Q1,
median, andQ3.Whiskers represent range excluding outliers.
X represents mean. O represents outliers, which fall below
Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. All non-annotated
comparisons are non-significant.

the baseline (p < 0.01). On average, participants’ inputs were 40.91%
more accurate with combined (M = 20.45; SD = 4.94) than with
baseline (M = 34.61; SD = 10.07). Additionally, combined was more
accurate than constraints-only (p < 0.05).

Confidence. Since confidence ratings were not normally dis-
tributed (per Shapiro-Wilk test), we performed a Friedman test,
revealing significant differences between conditions (Q = 24.74;
p < 0.001). Post-hoc pairwise comparisons with Bonferroni correc-
tion found a significant increase in the confidence ratings between
combined and baseline (p < 0.001). On average, participants’ con-
fidence increased by 53.85% with combined (M = 5.00; SD = 1.28)
when compared to baseline (M = 3.25; SD = 1.22).

Accuracy analysis per target. In Figure 7 (a), we zoom in on
the first target from the pair of inputs that participants performed
after the distraction task (i.e., the last state). This data is normal
(per Shapiro-Wilk), and a one-way ANOVA revealed a significant
effect of conditions (F = 10.45; p < 0.0001). Post-hoc analysis with
Bonferroni corrections found that combined (M = 9.29; SD = 4.04)

was significantly more accurate than baseline (M = 19.60; SD = 5.41;
p < 0.001), constraints-only (M = 16.36; SD = 4.57; p < 0.01), and
confirmation-only (M= 15.83; SD= 5.99; p < 0.05)—this result agrees
with the main finding. Moreover, this analysis found that recall-only
(M = 9.82; SD = 3.51) was significantly more accurate than baseline
(p < 0.001) and constraints-only (p < 0.01)—this result is to be ex-
pected as the recall technique assists users by moving their hand
to automatically acquire the first target. In fact, further zooming in
on the top 5% of the most accurate last state targets per participant
(i.e., the top three trials per participant, accounting for all trials of
a particular individual) confirms this interpretation: most of these
best-accuracy trials were achievedwith the combined (12) and recall-
only (11) conditions compared to baseline (4), confirmation-only (3)
and constraints-only (6).

Figure 7 (b) zooms in on the second target from the pair (i.e.,
the new state)—the hardest target since: (1) proprioceptive memory
likely fades until one reaches the second target; and (2) it has no
assistance from recall (here, one expects recall to play a minor role).
Since these errors were not normally distributed (per Shapiro-Wilk
test), we performed a Friedman test. None of the differences be-
tween conditions were significant for the input error of the second
target (Q = 3.40; p = 0.49). Yet, as depicted in Figure 7 (b), the top
5% most-accurate trials per participant revealed a trend where the
most were achieved via combined (16), compared to baseline (5),
recall-only (4), confirmation-only (7), and constraints-only (4).

Relative input accuracy.While the previous accuracy analy-
sis accounted for the traditional metric of absolute error to target,
we now zoom into the relative input accuracy (Figure 8). This is
computed by calculating whether the relative distance between
the participant’s pair of input targets is correct, regardless of their
starting position. This would be equivalent to using an input device
in relative mode rather than absolute mode [17]. This data did not
follow a normal distribution (per the Shapiro-Wilk test), so we used
a Friedman test which revealed a statistically significant difference
between conditions (Q = 16.93; p < 0.01). Post-hoc analysis with
Bonferroni correction found a significant improvement in accuracy
(p < 0.01) in combined (M = 12.54; SD = 3.23) compared to the
baseline condition (M = 18.50; SD = 4.33). Zooming in on the top

Figure 7: (a) First target (i.e., last state) absolute error and histogram of respective top 5% trials per participant. (b) Second target
(i.e., new state) absolute error and histogram of respective top 5% trials per participant. Boxplot bars from left to right represent
Q1, median, and Q3. Whiskers represent range excluding outliers. X represents mean. O represents outliers, which fall below
Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. All non-annotated comparisons are non-significant.
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Figure 8: Relative error and histogram of respective top 5%
trials per participant. (Boxplot bars from left to right repre-
sent Q1,median, andQ3.Whiskers represent range excluding
outliers. X represents mean. All non-annotated comparisons
are non-significant).

5% most accurate trials by relative error reveals that most were
achieved via combined (14) and confirmation (9) compared to base-
line (4), recall (4), and constraint (5). This suggests that a combined
technique might also be beneficial for relative control of embodied
devices.

5.3 Qualitative results
All 12 participants voiced that feedback from EMS made the task
easier, compared to the baseline condition. Nine participants stated
that they found the task challenging.

Recall Seven (out of 12) participants denoted recall as the most
valuable technique, e.g., “effectively removed one-half of the mem-
ory task” (P12). Eight participants stated that it was easier to re-
member the second target when recall provided a starting point.
Five participants stated that recall approximated the interaction to
a relative input style, e.g., “only having to know where the target is
relative to recall” (P1).

Confirmation. Eight (out of 12) participants stated that they
counted the detents to remember the targets. Confirmation cues
provided them with a mental model, which could be more resilient
to the distraction task, e.g., “Up 4 was easier to remember than a
little up from the middle” (P11).

Constraints. Six participants (out of 12) stated constraints cre-
ated a frame of reference, especially for targets close to the con-
straints, as P10 stated “[constraints] were helpful when the recall
and target were close to minimum and maximum”—suggesting
that other techniques were necessary for filling in the large space
between the constraints.

5.4 Discussion
EMS did not disrupt input.Most remarkably, contrary to the well-
documented drawbacks of EMS (e.g., conflicting with one’s own
movements [21, 33], distracting tingling [21, 42], and disrupting
gestures [33]), the benefits outweighed the drawbacks. The results
showed that these EMS techniques improved input accuracy by
∼40% and confidence by ∼50%.

Challenging task.We believe these results are important con-
sidering our conservative study design: (1) Previous studies used
one target; instead, we featured two targets to make the task more
challenging but also more useful, as many embodied devices will re-
quire smooth input from an initial target to a desired target. (2) Pre-
vious studies used immediate input and asked participants to
immediately input the target they felt proprioceptively (e.g., “recre-
ate their hand pose after having been stimulated” [28, 42]). Instead,
we not only forced participants to wait between interactions but
also included a distraction task which translates into more useful
knowledge for the field.

Condition order randomization. Besides not providing partic-
ipants with any training, the studywas challenging in that condition
orders were randomized, which added to the task difficulty. For
example, some participants (selected at random) experienced the
combined condition as their first condition—this condition con-
tained all techniques in it, yet, without extensive training, our
analysis confirmed it was the most effective approach.

Techniques in isolation. Despite showing that no technique
in isolation greatly increased input accuracy, results still suggest
synergistic benefits. Qualitative results revealed that participants
understood and used the affordances of each technique. The combi-
nation of these techniques created demonstrably superior feedback
compared to the baseline.

Study limitations. As with any study, ours is not without limi-
tations which should be taken into consideration before generaliza-
tions: (1) this study was limited to a lab/stationary setting, which
may not generalize highly-mobile applications; (2) the system was
limited by the accuracy of EMS despite using a state-of-the-art
PID as is common in EMS systems [22, 28, 41]; finally, (3) as the
first in-depth study of these interaction techniques, this study was
restricted to slider-type embodied devices given their prominence
in prior work [28, 41, 42], leaving other embodied devices (e.g.,
buttons, knobs, etc.) unexplored.

Alternative designs. Since this study is the first systematic
investigation of these techniques, we evaluated them using the
same absolute input design as in [28, 41, 42]. We acknowledge that
other designs might be leveraged to solve these gestural input
problems, such as by switching to a relative slider (e.g., resets its
position at invocation1).

6 Conclusions & Design Implications For Future
Embodied Devices

This study is the first to demonstrate interaction techniques, based
on EMS, that increased input accuracy in one instance of an em-
bodied device, i.e., a wrist-based slider. We argue that this result
is important as it might extend to further instances of embodied
devices. As such, future work should apply these techniques to
more embodied devices. Figure 9 illustrates more possibilities that
also render common GUI elements as embodied devices, such as:
buttons (which might benefit from confirmation to indicate valid
inputs), toggles/checkboxes (which might benefit from recall to

1It is worth noting that relative input interfaces do not allow users to understand the
current value based on their sense of proprioception alone, because the invocation
resets the current value—in other words, using relative input, a user can adjust but is
unable to retrieve, using proprioception, the absolute value of the interface right after
invocation.
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Figure 9: Illustrating exemplary embodied devices (button, toggle, slider, knob, checkboxes, and radio buttons) in which these
techniques might be applicable. Note that for clarity we depict all these examples on the user’s hand, but embodied devices can
be applied more broadly to other limbs.

reflect their on/off state), sliders/knobs (which we have shown, for
the case of wrist-based sliders, to benefit from all three techniques),
and even radio buttons (which might benefit from constraints to
prevent users from incorrectly inputting more than one value at a
time).

Additionally, embodied devices can be used in other limbs be-
yond the hands (e.g., the neck-based slider in [41] or ankle-based
knob in [1])—in these contexts, we also expect our interaction tech-
niques to prove useful.

Finally, an additional area for future investigation where these
techniques might also prove useful is when multiple embodied
devices are used (e.g., simultaneously but on different limbs or
sequentially on the same limb).
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