CHARACTERIZING SNOWFALL AND SNOWPACK USING 60 GHZ MMWAVE RADAR SENSORS

INTRODUCTION

ENVIRONMENTAL MMWAVE SENSORS

SNOWPACK PROFILING

- Snow height can be measured by performing downwards radar ranging from a pole to the top of the snowpack.
- Experiments performed in Nome, AK • Range tests performed at (0.24, 0.39,
- 0.53, 0.63, 0.73, 1.31, 1.64) m • A total of 3,200 radar frames were
- obtained over all 7 setups
- We evaluate CA-CFAR for top-ofsnowpack detection
- Usually returns multiple peaks
- Exact peak can be missed (Fig.5)
- Not tailored to this problem
- We propose a novel algorithm:
- 1) Steepest upslope in range plot: $x = max(Vanplitude(range))$
- 2) Detected top-of-snowpack *t*(0) is first local maximum after slope $t = [amplitude'(range) \stackrel{?}{=} 0] \forall range > x$

mmWave as small-scale, high-resolution weather radars:

- $\varepsilon_{r, dry, snow}$ only depends on density $(\rho$ [kg/m³]), not morphology
- $\varepsilon_{\rm r, \, dry \, snow}=1+1.7\rho+0.7\rho^2$ (Tiuri et al. 1984)
- Snowpack analysis enables range profile correction (Fig. 9) • Inversely: range-to-ground knowledge enables snow density
- and SWE measurement
- Morphology affects reflectivity so range profiles indicate layers

- B. Upwards pointing radars to measure velocity and reflectivity of hydrometeors
- C. Horizontally pointing radars to measure wind direction and speed. In combination with radar targets, attenuation measurements can provide more accurate information on precipitation intensity

SNOWFALL CHARACTERIZATION

Snow-water equivalent (SWE) and snowpack morphology: • Snowpack permittivity affects radar signal propagation speed

 $\mathsf{Stijn\;Wielandt}^1$, Ivo Marković 1 , Lonnie Chien 1 , Diana Morales 1 , Ryan Landon Crumley 2 , Baptiste Dafflon 1 , Reynold Cooper 3 swielandt@lbl.gov

> Future work: • Use ML to detect the structure and density of snowpack layers • Quantify precipitation based on attenuation measurements, measure wind speed, and classify precipitation using ML

ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Next-Generation Ecosystem Experiments–Arctic Project (NGEE-Arctic), the the LBNL Watershed Function Scientific Focus Area (WF-SFA), and the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.

0.002 0.002 0.002 P90 0.053 0.025 0.025 0.025 P95 0.454 0.053 0.053 0.042 *Fig. 8: Gradient based ranging errors for averaged range profiles over multiple frames*

Lawrence Berkeley National Laboratory, Climate and Ecosystem Sciences Division (1) & Nuclear Science Division (3), 1 Cyclotron Rd, Berkeley, CA 94720, United States Los Alamos National Laboratory, Climate, Ecosystems, and Environmental Science (2), Bikini Atoll Rd, Los Alamos, NM 87545, United States

A

• Range profile averaging over multiple radar frames drastically reduces outliers

. Nyfors and M. Hallikaiken, "The complex dielectric constant of snow at microwave frequencies," in *IEEE Journal of Oceanic Engineering*, vol. 9, no. 5, pp. 377-382, December 1984, doi: 10.1109/JOE.1984.1145645.

P95 1.241 1.412 1.241 0.454 *Fig. 7: Gradient based ranging errors for three Rx channels and their averaged range profiles*

Fig. 1: Concept of distributed mmWave radars for monitoring environmental processes

Fig. 2: Disassembled radar system for field deployment

Fig. 3: Radome cross section

Table 1: Radar configurations for the three studied scenarios

Fig. 10: Snowfall characterization setup based on doppler velocity (B) or signal attenuation (C) B. Doppler based precipitation

characterization • Rain observability is high due to strong reflectivity $(\varepsilon_{r,\text{water}} = 12)$ and high velocity • (Dry) snow observability is lower due to low reflectivity $(\varepsilon_{\rm r, dry~snow} \approx 2)$ and low velocity

• Dry weather observations show only zero-doppler reflections (avg. 351 frames over 70 seconds interval) • Ground truth data obtained with co-located laser curtain based disdrometer, measuring hydrometeor speed, size, type, etc.

• CA-CFAR returns multiple peaks, so we evaluate two selection criteria (Max peak, First peak) and compare snow ranging errors to the proposed gradient based method.

Fig. 6: Snow height estimation errors for the gradient based algorithm and CA-CFAR The gradient based method provides most accurate results with significant outliers. We evaluate range profile averaging methods:

• Averaging channels drastically reduces errors • Antennas perform equally

- Environmental scientists need spatiotemporally dense observations.
- Existing techniques for snowpack and snowfall monitoring are often inaccurate, low-resolution, high-power, labor-intensive, expensive.
- mmWave FMCW SoCs can be used to form networks of distributed radar sensors for high-resolution environmental observations

- Compact 1Tx-3Rx on-chip antennas
- Enclosure/radome structure:
- PP $(\varepsilon_{\rm r} = 2.3, \tan\delta = 10^{-4})$
- Thickness = 1.65 mm = $\lambda/2$
- Cylindrical with chip centered:
	- Far field $(r = 24.5$ mm)
	- Equidistance ensures constant radome thickness
- We selected 60 GHz BGT60TR13C FMCW radar development kits for experiments in remote environments
- WiFi connectivity in remote field sites enables real-time UDP streams of raw ADC data and remote configuration by LBNL servers
- Low power consumption allows for operation on solar power

Fig. 5: Illustration of the proposed gradient based ranging algorithm compared to CA-CFAR

A

Fig. 4: Snowpack profiling setup